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An experimental and numerical investigation of the two-dimensional flow normal to 
a flat plate is described. In the experiments, the plate is started impulsively from rest 
in a channel for Reynolds numbers, based on the breadth of the plate, in the range 
5 d Re < 20. Over this range of Re the flow remains symmetrical and stable and 
tends to a steady state but is shown to depend strongly on the ratio h of the plate 
to channel breadth. The evolution of the experimental flow with time and Reynolds 
number is studied and the variation with h in the range 0.05 < h < 0.2 is investigated 
sufficiently to enable an estimate of properties of the flow as h -+ 0 to be obtained for 
the steady-state flow. The numerical results are obtained for steady flow normal to 
a flat plate in an unbounded fluid for Reynolds numbers up to Re = 100. They 
supplement and extend results for this flow obtained for values of Re up to 20 by 
Hudson & Dennis (1985). The present solutions have been found using a vorticity- 
stream function formulation rather than the primitive-variable approach of Hudson 
& Dennis and provide an independent check on these results. A comparison of the 
theoretical results for Re < 20 with the limit h+O of the experimental results is, 
generally speaking, extremely satisfactory. 

1. Introduction 
A paper by Hudson & Dennis (1985) has given results o f  calculations of the steady 

two-dimensional viscous flow of an incompressible fluid normal to an infinite flat 
plate of finite breadth in an unbounded fluid and made comparisons with some 
features of the existing experimental results of Prandtl & Tietjens (1934), Taneda 
(1968), Acrivos et al. (1968) and with a theoretical model of Smith (1979). The 
calculations were carried out using a solution procedure in terms of the primitive 
variables (velocity components and pressure) based on a method due to Belotser- 
kovskii, Gushchin & Shchennikov (1975) which has certain advantages in the 
present problem in that the effect of the singularity in the vorticity at the edges of 
the plate does not directly enter the calculations. Solutions were obtained in the 
Reynolds-number range 0.1 d Re d 20, where Re = 2UZ/v, (I = La), D being the plate 
breadth, U the velocity of the uniform stream at large distances and v the coefficient 
of kinematic viscosity of the fluid (see figure 1 ) .  Over this range ofRe the comparison 
between the numerical and experimental results was generally satisfactory. However, 
although the dependence on Re of the length of the separated region behind the plate 
was approximately linear, the gradient of the line was not in agreement with the 
theory of Smith (1979). 
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A more recent paper by Ingham, Tang & Morton (1990) has described a study of 
steady two-dimensional flow normal to an infinite array of plates, each of infinite 
length and finite breadth, whose planes lie in a single plane such that the edges of 
adjacent plates are parallel. The edges of each pair of adjacent plates are separated 
by the same constant gap, giving the flow a periodic structure. The problem was 
considered both theoretically and experimentally and the results of calculations were 
found to be in good agreement not only with the experiments but also with 
theoretical work on a related problem by Smith (1985). In fact, the theoretical work 
of Smith (1985) gives L / D  N 0.10 Re for the ratio of the eddy length L to the breadth 
I) of the plate, whereas Ingham et al. (1990) suggest L / D  - 0.105 Re for large enough 
Re in their calculations, which cover the range 0 <Re < 500. Moreover, an 
examination of their results indicates that this formula fits some values of L I D  for 
quite low Re (e.g. L I D  = 1.054 a t  Re = lo), whereas the calculations of Hudson & 
Dennis (1985) give substantially greater values of LID. A possible reason is that a 
blockage effect exists in the flow normal to any individual plate in the case of the 
array, owing to the presence of the neighbouring plates. I n  the calculations of 
Hudson & Dennis, corresponding to a plate in an infinite field, there is no blockage 
ratio. 

The present work is motivated by several objects. In  the first place it is of 
importance to verify that the precise details of the calculated results correspond to  
those obtained in a comparable experimental study. An experimental study must 
necessarily be carried out in a channel of finite breadth in which the blockage ratio 
h = D / A  (see figure 1) exerts an influence on the flow. No systematic study of this 
effect has previously been made. I n  the present paper we describe an experimental 
investigation of this effect on the flow normal to a flat plate started impulsively from 
rest in a channel. The range of Reynolds numbers is 5 < Re < 20, over which the flow 
remains stable and attached and ultimately tends to a steady state. The limit of the 
steady-state results as the blockage ratio h -+ 0 is estimated and compared with the 
calculations of Hudson & Dennis (1985), which are themselves confirmed by some 
new calculations using the vorticity-stream function formulation of the Navier- 
Stokes equations. 
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The new calculations provide some results not given by Hudson & Dennis, for 
example the steady-state velocity profiles on the axis of symmetry fore and aft of the 
plate. The profiles aft of the plate can be compared with good precision with the limit 
as h + 0  of the corresponding experimentally measured profiles in the wake. The 
calculations are also extended for values of Re up to 100, well beyond the range 
covered by Hudson & Dennis and of the present experiments. There is motivation for 
this in view of the theoretical work of Smith (1979, 1985), Peregrine (1985) and the 
numerical work of Fornberg (1980, 1985). For example, Peregrine’s discussion of 
Fornberg’s calculations, which are for flow past a circular cylinder, points out that 
over a considerable range of Reynolds numbers Re the length of wake is proportional 
to Re and its breadth proportional to Re; consistently with Smith’s (1979) model, but 
for higher Reynolds numbers the situation changes and, in particular, the breadth of 
the wake increases proportionately to Re. We can at  least confirm from the present 
calculations for Re up to 100 that the properties of the wake in the case of a flat plate 
are also consistent with Smith’s model and Fornberg’s calculations. These are key 
properties of the flow at moderate Reynolds numbers; they are discussed later. 

The experimental study is based on a technique of visualization which yields 
quasi-instantaneous velocity fields. Coutanceau & Rouard (1977a, b )  have shown, in 
studying the development of the wake in the rear of a circular cylinder, that the 
effect of the confinement of the cylinder is an important factor, particularly for small 
Reynolds numbers. Unlike the case of the circular cylinder, little data exists in the 
literature concerning the experimental study of the wake development at  the rear of 
a plate situated at  right angles to the mainstream, particularly for small Reynolds 
numbers for which the wake remains attached to the plate. The existing ones are 
based on techniques of visualization, although the investigation of Acrivos et al. 
(1968) depends also on measurements of pressure, velocity and local shear stress. 
These authors demonstrated the similarity of the evolution of the steady-wake 
bubble as a function of Reynolds number for different forms of obstacles, of which 
the flat plate at right angles to the stream was considered for Reynolds numbers up 
to 200. Some geometrical characteristics of the re-circulating zone were given, such 
as the coefficient of proportionality between the length of the wake and the Reynolds 
number, the maximum width and the position of the centres of the vortices relative 
to it, but the study is mainly for Re > 30. The higher Reynolds numbers were realized 
by stabilizing the wake using a splitter plate placed at some distance from the 
obstacle and the value of h was kept fixed at  h = 0.05. The flow was considered to be 
separated from the edges of the plate for all Re > 0. 

Taneda ( 1  968) analysed the steady-state flow for 0.1 6 Re d 30 and for a constant 
value h = 0.0325, judged to be sufficiently small for the effect of the walls to be 
negligible. He gives details of the recirculating zone, such as its length and the 
position of the centres of the vortices, noting also the values Re = 0.4 and 25, 
respectively, at  which the wake first appears and at  which it starts to oscillate. 
Arakaki (1968) studied the different regimes in the evolution of the wake as a 
function of Reynolds number over the range 10 <Re < 100 and gave values of the 
critical Reynolds numbers which separate them. He also found Re = 25 to be the 
Reynolds number at  which the wake first started to oscillate. Plates of different 
breadths were used to obtain the range of Reynolds numbers investigated, but the 
value h = 0.1 was maintained for all measurements using parallel plates as movable 
sidewalls. Results were also given for the development of the wake with time, but 
only for Re > 80. Finally, Taneda & Honji (1971) studied the development with time 
of the separated flow normal to a flat plate which was started from rest either 
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impulsively or with a uniform acceleration and with h = 0.026. Amongst numerous 
visualizations, they have given the evolution of the wake length normalized in 
different fashions for a range of about 18 <Re < 1135. 

In none of these experimental investigations has a study of the effect of change in 
blockage ratio on the flow been made, so that it could be argued that none of the 
results can safely be compared with calculations of the flow in an infinite domain. In 
the present work the variation with h of key flow properties such as the length and 
breadth of the separated wake and the position of the vortex centres is made. The 
effect of variation of h on the flow is found to be of considerable importance but when 
the steady-state results are extrapolated to h = 0 there is good agreement with the 
corresponding results of both the present calculations and those of Hudson & Dennis 
(1985). We thus have succeeded in linking both sets of calculations with the 
experiments for low values of Re and the present calculations with theoretical results 
for higher Re up to Re = 100, making a contribution to the understanding of the flow 
at least for moderate Re. 

2. Basic theoretical equations and method of solution 
The equations to be solved are the usual Navier-Stokes equations for the steady 

motion of an incompressible fluid past a flat plate occupying the position x = 0, 
- 1 < y < I of Cartesian coordinates (x, y). The boundary conditions are that 
u = v = 0 on the plate and u + U ,  v +- 0 as x2 + y2 +co, where (u, v) are Cartesian 
velocity components and U is the free-stream velocity. Since the flow is symmetrical 
about the axis y = 0, it is necessary to consider only the flow in the half-plane 
o<y<oo.  

Hudson & Dennis (1985) used an unsteady model of the flow in terms of u, v and 
the pressure p .  The transformation of elliptic coordinates 

2 = 1 sinh 5 cos 7, y = 1 cosh f ;  sin 7, (1)  

was used to transform the problem to a more suitable domain. Here we shall use the 
same transformation but work in terms of a dimensionless stream function $ and 
vorticity g which are defined by means of the equations 

The governing equations for $, 6 in the (5, q)-plane are then 

Their solution is required subject to the conditions 

$=a$/a[=O when f = O ; $ = c = O  when ? = O , . z r ;  (5a, 6 )  
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In practice, the computational domain of the solution is the region 0 Q 6 d gm, 
0 < 7 < n, where Cm is some large enough value of 6 at which some approximate form 
of the conditions (6) may be assumed. This region is divided into elements by grid 
lines parallel to the 6 and q coordinate axes with equal spacing h in both coordinates. 
The equations (3) and (4) are approximated at each grid point by second-order 
accurate finite-difference formulae. If, in standard notation, we denote quantities at 
the grid points (50,70), ( C O + + , T O ) ,  (EO9T0+h)> (to-h,qo), ( t0 ,ro-h)  by means of 
subscripts 0, 1, 2, 3, 4 respectively, the usual h2-accurate approximation to (3) at 
(50>70) is 

(7) 

while if we use the notation f = $e a+/ar, g = -$Re a$/a& we can write a generalized 
second-order accurate approximation to (4) at (to, qo) as 

+ $2 + +3 + 7,h4 - h,hO +$ha (cash 2t0 + cos 2q0) go = 0, 

(1 -+hio + ah”:) + (1 -@,go + ah2gi) c2 + ( 1 + $hfo + ahat:) 5, 
+ ( l + ~ ~ g o + a h 2 g : ) ~ 4 - ( 4 + 2 a ~ ~ [ ~ ~ + g ~ ] ) c o  = 0, (8) 

where a is a parameter to be defined. 
If a = 0, the approximation (8) is the usual central-difference representation of (4). 

However, the value a = Q was suggested by Dennis & Hudson (1978) by means of an 
expansion procedure of an exponential scheme first given by Dennis (1960) and there 
is also justification for taking a = A, since then all terms present in (8) appear as part 
of the h4-accurate approximations of Dennis & Hudson (1989). All such cases of (8) 
are second-order accurate but the point about using non-zero values of a! is that the 
associated matrix is diagonally dominant for all values of a 2 and it is then known 
that the successive over-relaxation iterative method of solution is convergent over a 
well-defined range of the relaxation parameter. Iterative methods of solution were 
employed for solving the coupled sets of equations (7) and (8) over the given finite 
rectangular domain with a = in (8). There is no need to describe the detail, since 
in principle it is similar to that used by Ingham et al. (1990) who used the analogue 
(8) with a = Q. 

It may, however, be useful to give some detail of the satisfaction of the boundary 
conditions (5) and (6). From (6) it follows that c + O  as E+m but the decay is slow 
in the far wake region, so as t - tm we use a method of approximation to 5 originally 
introduced by Dennis, Hudson & Smith (1968) and used by Dennis & Chang (1970) 
in obtaining solutions of the vorticity equation for flow past a circular cylinder. If we 
linearize (4) following the manner of Oseen, using the stream function of the external 
stream satisfying (6), we obtain an equation which yields a solution such that c + O  
as &-+m and from its asymptotic properties for large 6 we deduce the condition 

C(t+h>7) {exp [dcos r-1)-31}5(L7}, (9) 

where x = s e  exp (E) .  Equation (9) may be used as a boundary condition for (8) at 
some large enough value 6 = Ern and it possesses the characteristic that, eventually, 
as c+m, the vorticity is significant only in a region for which zv2 = 0(1),  i.e. 
q = O(z4)  which is the correct asymptotic behaviour according to the solution of 
Imai (1951). 

For the boundary condition for + at 5 = cm, we take a perturbation Y from the 
potential flow by substituting 

(10) + = cosh t sin 7 +  !P 
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in (3) and then considering the nature of the solution as ~ + c o .  Since 7 = O(&) as 
[ t m ,  the solution is of a boundary-layer nature in the 7-coordinate with a 
boundary-layer thickness proportional to d. Thus when > &,, where 5, is large 
enough, the term a2 Y/a[z in (3),  after transformation using (lo), may be neglected 
in comparison with the term in a2 !P/?y2. In other words, as E+m, (3) can be 
approximated by the equation and conditions 

Once an approximation to c is known, therefore, a t  a given station c = ern, a 
corresponding approximation to !P may be found by integration of ( l l a )  along 
6 = tm subject to ( 1  1 b) .  Moreover, when 3 is large enough and c is asymptotically 
zero, the profile for Y is linear with 7, exactly consistent with the form of solution 
found by Tmai (1951) and used by Kawaguti (1953) in calculating flow past a circular 
cylinder. The solution of (1  1 a)  is found by two successive numerical integrations. The 
first integration gives 

where 

Then !P([,, 7) is found by a further integration of (12) subject to Y(tm, 0) = 0. Thus 
both of ( l l a ,  b )  are satisfied and then $(t,, 7) is calculated from (10). 

The conditions (5) provide complete conditions for tj9 and 5 on 7 = 0, n and for $ 
on = 0. Thus it remains only to provide a condition for [ on E = 0 and to do this 
we use the condition a$/a[ = 0 in conjunction with the finite-difference equation (7) 
and equation (3) to yield, following the method of Woods (1954), 

6lc.l -& on [ =  0, 
eo = - h2( 1 + cos 2q0) 

which is h2-accurate. When yo = in, (13) does not give a determination of Q. The 
vorticity is in fact infinite a t  this point [ = 0, 7 = in  and this is one of the basic 
difficulties of the problem when the present formulation is used. We can avoid the 
difficulty by approximating (4) in a slightly different way at the grid point 5 = h, 
7 = i n  following Dennis & Smith (1980). Thus, instead of approximating (4) along 
lines of constant [ and 7 at this point, which would involve a knowledge of 5 at 
(O,&TC), we rotate the axes through an angle in which leaves (4) unaltered and then 
approximate the 5 derivatives in terms of [(h, &IT), c(0, &n + h) ,  [(O, in- h),  C(2h: in + h)  
and 5(2h,+n-h). All the points concerned are points of the grid structure but the 
introduction of c(0, in) is avoided. 

3. Calculated results 
Calculations were carried out over the range of Reynolds numbers Re = 0.5 to 100 

using the Gauss-Seidel iterative procedure of solution. After one complete iteration 
through the difference equations (7), the surface vorticity on the plate was calculated 
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Re h Em LID C,. 
30 &I n 3.91 1.82 
30 &n TC 3.89 1.82 
30 &n fn 3.89 1.83 
30 $n x 3.84 1.82 
50 &n in 7.12 1.55 
50 

+IT 
&c 7.13 1.55 

70 &n #n 10.84 1.41 
70 &n in 10.87 1.41 
70 &n @c 10.50 1.42 

TABLE 1. Comparisons of eddy length L and drag coefficient C,, for various h and &,, 

50 mn @t 7.03 1.57 

from (13) and this was followed by a complete iteration through (8) in which the 
condition (9) was incorporated at 6 = gm. A new boundary condition for $ at 6 = gm 
was then calculated following the procedure outlined in the previous section. This 
sequence was repeated until convergence, which was decided by the criterion 

where the sum extends over all grid points and Ic, k+ 1 denote successive iterates. 
This is a more than adequate criterion in view of the fact that the surface vorticity 
becomes large in the neighbourhood of the singularity in 6. It was generally necessary 
to use an under-relaxation factor in the calculation of the surface vorticity. The value 
of a = &was used in the difference equations (8) and this was checked using the value 
a = 0 (central differences) in several cases for small enough Re, where the iterative 
procedures converged rapidly enough. The point here is that the iteration matrix 
associated with (8) when a = 0 will lose diagonal dominance if a numerical value of 
hf, or hg, exceeds 2. In  view of the conditions (6), this will certainly happen for a fixed 
Re and h when becomes large and to avoid it, a balance must be chosen between 
Re, h and Em if a = 0 is to be used. Comparisons were carried out in the cases a = 0, 
a = & only for Re = 1 and 5. The overall effect on the main computed properties of 
the flow of this variation of a was negligible. 

The effect on the flow properties of the positioning of the outer boundary g = tm 
is small, owing to the employment of the asymptotic conditions noted in $2. The 
property most influenced by change of Em is the length of the recirculating region. 
This can be measured quite accurately from the numerical solutions by determining 
the point at which the velocity component in the x-direction changes sign on the 
axis y = 0 a t  the rear of the plate, i.e. when q = 0. Thus, a@/Q was calculated at  grid 
points on q = 0 using numerical differentiation formulae of both hZ and h4 accuracy, 
which were found to agree to high precision over the whole range of Re considered. 
From the h4-accurate results, the position of the zero of a@/aq was estimated from 
Bessel’s interpolation formula (Hartree, 1958, p. 68) applied to tabulated values of 
a@/aq at the four grid points in the immediate neighbourhood of the zero, i.e. at two 
grid points either side of it. An illustration of the accuracy of this process will be 
given shortly. 

In  view of the comparison with experimental results to be made later, we have 
investigated in detail the effect of change of both Ern and grid size on the length of 
the recirculating region over the experimental range 5 < Re < 20. The following 
results were obtained at Re = 10, but similar tests were made at Re = 5 and 20, with 
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similar results. Two grid sizes were considered, h = &a and&+ When h = &a, the two 
values trn = a and $a were considered and when h = A, the three values Ern = a,  :a, 
:a were used. For the grid size h = &a the value of L I D  was found to be 1.15 for both 
5, = a and $71 and for h = &a, L I D  was found to be 1.16 for all three cases of 5,; it 
should be remembered that these three cases correspond to x / l  = 11.5, 19.5 and 33.0, 
respectively, i.e. approximately 6, 10 and 16 times the breadth of the plate. The 
given calculated values were based on h4-accurate values of a@/arj at  9 = 0, but 
the h2-accurate values gave practically the same results, e.g. for h = &n, 
6, = n, the value L / D  = 1.15 was obtained. 

In order to examine the effect on the results of variation of grid we have selected 
two properties, one local and one global, for comparison. The local property is again 
the dimensionless length L I D  of the separated region behind the plate and the global 
property is the total drag coefficient C,, corresponding to the force D* on the plate 
exerted by the fluid. If we define a drag coefficient by C,. = D*/u21 it may be shown 
by consideration of the momentum balance of the fluid between the contour C, of the 
flat plate and any surrounding contour C ,  that, for any ( > 0, 

{ [ @!J - g)'] cosh 6 cos 7 - 2 -- a$ w sinh 6 sin 7 
CD*=~[cosh2(+cos27  36 a7 

1 4 
Re 

cosh[sinq--[sinhtsinq dq. (15) 

The application of (15) over various contours as 6 increases gives some indication of 
the accuracy of the calculations. It was found in all the cases presented that the 
estimate of C,, remained remarkably constant over much of the computational 
domain and became inaccurate only for values of E close to 6 = Em. 

In table 1 we give the results of some typical comparisons of the two representative 
properties for various Reynolds numbers and grid sizes. In general, it was found in 
the whole of the computations that the effect on the results of increasing Ern was 
negligible provided Ern was large enough and the grid size small enough. This is seen, 
for example, at Re = 50 in table 1, where an increase in Crn from ;a to $a when 
h = &a increases L I D  by a very small amount and again at  Re = 70 in the case of 
h = &a, where L I D  increases only from 10.84 to 10.87 as Ern is increased from +#a to 
#a. The effect of decrease of grid size is more important, e.g. for both Re = 50 and 70. 
Thus the values 5, = $IT, %a are roughly the same for two of the solutions at  the same 
value Re = 50 and there is about a 1 % difference in LID.  There is a greater change 
with grid size of LID for the two solutions a t  the approximately same values of 
Ern = gn and E x  at Re = 70. However, the change is only about 3% and the more 
accurate of the two values probably differs from the correct value by less than this 
amount. Finally, a test of the accuracy of the equation (13) employed to calculate the 
surface vorticity on the plate has been made by using an alternative method in which 
the vorticity at  5 = 0 is determined from integrals involving the vorticity throughout 
the field of flow derived from one of Green's identities. This method has been 
described by Dennis & Chang (1969) and more generally by Dennis & Quartapelle 
(1989), where a test of this method is given for the case Re = 70 of the present 
problem. The surface vorticity is found to differ little from the calculation using (13), 
although the difference is rather more near the singularity at 7 = +a. Nevertheless, 
the effect on the overall properties is insignificant. 

In table 2, the results obtained from the present computed solutions corresponding 
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Re 

0.5 
1 
5 

10 
20 
30 
40 
50 
70 

100 

5, LID a/D b/D C,. 
II: 0.12 0.07 0.44 15.08 
n: 0.21 0.10 0.51 9.66 
gx 0.65 0.27 0.59 3.75 
~ I I :  1.16 0.46 0.62 2.75 
in 2.43 0.68 0.78 2.09 
EII: 3.89 1.00 0.87 1.82 
En 5.48 1.45 0.99 1.68 
En 7.03 1.97 1.15 1.57 
#II: 10.50 3.53 1.36 1.42 
$II: 15.3 6.54 1.64 1.34 

TABLE 2. Calculated properties of the solution 

Re 

1 
5 

10 
20 
30 
40 
50 
70 

100 

L/ W e )  
0.21 
0.13 
0.12 
0.12 
0.13 
0.14 
0.14 
0.15 
0.15 

al(DRe) 
0.10 
0.052 
0.046 
0.034 
0.033 
0.036 
0.039 
0.048 
0.065 

b/ (DRe;) 

0.51 
0.26 
0.20 
0.17 
0.17 
0.16 
0.16 
0.16 
0.16 

y,/(DRe$ 
0.97 
0.44 
0.33 
0.29 
0.28 
0.28 
0.28 
0.28 
0.28 

TABLE 3. Properties of the solutions scaled with respect to Reynolds number 

to the smallest grid sizes are presented for several properties, including the length of 
the separated region L and the coordinates (a,  b )  of the vortex centre. The results 
show good overall agreement with the corresponding results of Hudson & Dennis 
(1985, p. 377) over the range Re = 0.5 to 20. The streamlines and equivorticity lines 
for 0.5 d Re < 20 compare well with those of Hudson & Dennis (1985). Some typical 
streamlines and equivorticity lines are given in figures 2 and 3. In  table 3, we give 
values of various quantities scaled with respect to either Re or Re; in accordance with 
the expected theoretical behaviour of Smith (1979, 1985) and Peregrine (1985) noted 
in the present introduction. The quantity yw is the half-breadth of the separated 
region. There is certainly a tendency of L/(DRe) and y,/(DRd) to become constant 
at  the upper range of Re consistently with the numerical work of Fornberg (1980, 
1985) for a circular cylinder and the behaviour of the coordinates of the vortex centre 
seems to be consistent with the trend of L and y,. 

It is clear from both table 3 and figure 2 that the evolution with Re of the 
calculated wake-length is much greater in the present problem than in the case of the 
infinite cascade of plates considered by Ingham et al. (1990). They have carried out 
calculations corresponding to the single blockage ratio p = 2.0, where p is the ratio 
of the distance between successive gaps in the cascade to the plate breadth. 
Calculations as /3 +oo would presumably be needed to relate their work to the present 
calculations and experiments. Finally, in the case of the present problem, figures 4 
and 5 give calculated velocity distributions on the axis of symmetry before and after 
the plate which were not given by Hudson & Dennis (1985). The distributions in 
figure 5, together with various other properties of the motion for Re d 20 which have 
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- 0.005 - 0:002 

$ = 3  

1.6 

_ _ _  

FIUURE 2 (a-d). For caption see facing page. 
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* = 7.5 tn 

FIGURE 2 .  Streamlines for steady flow normal to a flat plate in an unbounded fluid. Values shown 
are for the dimensionless stream function $. (a)  Re = 5 ;  ( 6 )  Re = 10; ( c )  Re = 20; (d )  Re = 40; 
( e )  Re = 70; (f) Re = 100. 

been presented in the present section, will be related to  corresponding experimental 
results later. 

4. The experimental technique and parameters 
The experimental technique is based on the same general principle as that  used 

previously for studying similar flows at the Laboratoire de Mecanique des Fluides of 
the Universitk de Yoitiers and is described, for example, in Coutanceau &, Bouard 
(1977a, b ) ,  Maalouf & Rouard (t987), Ohmi et al. (1990). Thus, using solid tracers lit 
by a thin sheet of light coming from a powerful arc projector, we have visualized at  
different stages of its development a cross-section of the flow induced by a flat plate 
which is impulsively subjected, from rest, to a constant translational velocity 71 
perpendicular to  itself. The photographs are taken sequentially with a suitable time 
of exposure in order to obtain quasi-instantaneous velocity fields. The camera is 
controlled automatically by a micro-computer as i t  accompanies the plate in its 
motion simultaneously with a sheet of light which is created by a rotating mirror. 
Thus, in this frame, the plate appears to be fixed and placed normally to the uniform 
stream U ,  as shown in figure 1 ; details of the experimental conditions are given in 
table 4. By means of a semi-automatic analysis of the pictures using a geometrical 
table connected to a micro-computer, we have been able to determine the main 
characteristics of the recirculating zone which is formed at the rear of t h e  plate, such 
as the length L and the coordinates (a ,  b)  of the vortex centres (see figure l ) ,  together. 
with the velocity distribution along the rear axis of the flow. I t  is, in fact, the 
accurate determination of the point of reversal of this axial velocity component 
which allows us t o  determine the length L accurately. The error of this determination 
is certainly less than 5 YO, often considerably so. The evolution of these properties of 
the flow as a function of the normalized time t*(= Ut /D) ,  the Reynolds number 
Re = UD/v and the blockage ratio h = D / A  have been studied for the values given 
in table 5. 
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FIGURE 3. Equivorticity lines for steady flow normal to a flat plate in an unbounded fluid. Values 
shown are for the dimensionless vorticity f. (a )  Re = 20; ( b )  Re = 40; ( e )  Re = 70; (d )  Re = 100. 

5. Description of the unsteady flow 
In  the present section we shall study the development of the unsteady flow with 

time until a steady-state regime is established. Results of the flow visualizations will 
be presented and also the details of some results for the evolution with time of the 
velocity distributions on the axis of symmetry downstream of the plate. The main 
characteristics of all of the results are in principle the same. A separated region of 
flow appears to the rear of the plate consisting of two counter-rotating vortices, each 
with its own centre. This separated region elongates as time proceeds until eventually 
its length approaches a constant value and the vortex centres assume positions 
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FIGURE 4. Dimensionless axial velocity distribution u on the axis of symmetry in front of 

the plate. 

independent of time. It is these steady-state results which may be compared with the 
calculations. 

As an example, in figure 6, we show a series of visualizations giving the time 
evolution of the flow for the fixed Reynolds number Re = 20 and the blockage ratio 
h = 0.2. The experimental arrangements are such that the plate is seen end-on by the 
lens, which tends to cause a blurring on the photographs because the end of the plate 
is not in the field of vision of the camera (i.e. in the visualized plane). It may also 
appear from some of the photographs that the plate is not precisely perpendicular to 
the oncoming flow, but this is not the case. The illusion is due to the fact that the 
photographs are not taken a t  the same vertical position of the plate during its 
downward motion and the direction of the accompanying sheet of light is not exactly 
the same as the plate since it does not follow the motion of the plate precisely. This 
causes a shadow, which can appear inclined to the flow on the photographs. Actually, 
the plate is always maintained exactly at  right angles to the direction of motion since 
the slightest asymmetry in the vortices would cause instability of the flow. The 
evolution with time of the velocity distribution on the axis of symmetry at the rear 
of the plate which corresponds to the flow development given in figure 6 is indicated 
in figure 7. We have already noted that the intersection of these curves with the x- 
axis gives the length of the recirculating zone. 

The very rapid evolution of the flow in the initial stages of the motion and the very 
much slower later evolution from t* = 2.5 is very clear from figure 7 .  One can see that 
the velocities in the wake and the length of the separated region have practically 
stabilized from t* = 4. However, as has already been noted in previous studies of flow 
around a circular cylinder (Coutanceau & Bouard 1977a, b), the flow still continues 
to evolve slightly outside the wake. In  fact, it  is found that the steady-state regime 
is established more rapidly inside the recirculating region than outside it. We see also 
from figure 7 that the maximum velocity in the axial returning flow increases 
initially until t* = 1.5 and displaces towards the rear, but then after t* = 1.5 the 
maximum velocity decreases as it approaches the steady-state value. At t* = 1.5 this 
maximum velocity is about 1.6 times greater than the limiting value attained a t  
t* = 4. The same phenomenon occurs for other blockage ratios. 
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Rr  = I 

FIGURE 5 .  Dimensionless axial velocity distribution u on the axis of symmetry to the rear of 
the plate. (a)  1 6 Re 6 20; ( b )  30 G Re < 70. 

We next consider, in figure 8 ( a ) ,  the development with time of the recirculating 
region for the same Reynolds number Re = 20 but for different blockage ratios A. The 
evolution is practically the same for all values of h until about t* = 2, at  which the 
length of the wake is already about 1.4 times the breadth of the plate. We have 
included in figure 8 (a) the results obtained from the calculations of Hudson & Dennis 
( 1  985) together with those of the present paper. They are situated very reasonably 
above the experimental limiting values and they indicate the very important effect 
of the confinement of the channel walls. Thus, for the smallest blockage ratio, i.e. 
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Geometrical parameters 
Flat plate width D = 2.8 or 5.6 or 8.4 or 11.2 om 

length h = 43 om 
thickness e = 3 mm 

cross-section 56 x 46 cm2 
height 1 m 

Tank 

(the useful distance of displacement of the model 
is only 50 cm) 

Reflex camera 6 x 6  
Working liquid 
Solid tracers 

Range of speeds 
Exposure time 

Oil Primol 352 v = 220 cst for 20" 
Cuttings of magnesium of 4-5 pm thickness and 
20-40 pm length. Density: 1.74 

0.5 cm/s < U < 8.5 cm/s 
0.5 s < tp < 8 s 

TABLE 4. Details of the experimental parameters 

D = 11.2 cm Re = 20-10-7-5 0 < t* < 5 
h = 0.20 with At* = 0.5 

D = 8.4cm Re=20-10-7-5 O<t*d7 
h = 0.15 with At* = 0.5 

D = 5.6cm Re=20-10-5 O < t * < 9  
A = 0.10 with At* = 0.5 

D = 2.8cm Re=lO-5 0 < t* < 12 
h = 0.05 with At* = 0.5 

TABLE 5. Parameter values used in the experiments 

h = 0.1, the length of the recirculating zone appears to be already about 20 % smaller 
than it would be in an unbounded fluid and for h = 0.2 it is 33 % smaller. This is in 
good agreement with the results obtained previously in the case of a circular cylinder 
(Coutanceau & Bouard 1977a, b )  where, for the same Re, a reduction of 22% and 
35% was found from experiments for h = 0.07 and 0.12 respectively compared with 
the corresponding wake length in an unbounded fluid obtained by extrapolation. 

For Re = 10 the evolution with time of the wake is shown for h = 0.05, 0.1, 0.15 
and 0.2 in figure 8 (b ) .  For this smaller value of Re, the approach to a steady state is 
more rapid for all values of h than for Re = 20. A particular feature for this Reynolds 
number is that for a given value of h the wake length L passes through a maximum 
before eventually decreasing to its final steady-state value. This is clearly seen for 
h 3 0.1. It is also clear from this figure that the confinement of the channel does not 
affect the initial development of the wake length, but only starts to exert an effect 
somewhere after t* = 1. We have noted a similar situation in figure 8(a)  up to about 
t* = 2 and it is found again in figure 8(c) (Be = 5 )  up until about t* = 0.5. It seems, 
therefore, that the influence of the walls is not significant for approximately the same 
initial period of actual time t in each case. Moreover, the approach to the steady state 
is more rapid for the larger blockage ratios. 

A study has also been made of the evolution with time of the position of the centres 
of the twin vortices for each of the values of Re and h considered. The notation is 
indicated in figure 1. As an example, figure 9 shows the variation of the normalized 
distance a/D from the plate to a vortex centre with time for the case of Re = 10 and 



620 S.  C. R. Dennis, W.  Qianq, M .  Coutanceau and J.-L. Launay 

FIGURE 6(a-d). For caption see facing page. 
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FIGURE 6. A series of flow visualizations for Re = 20 and blockage ratio A = 0.2. 
t* = (a)  0.5;  ( b )  1.0; (c) 1.5; (d) 2.0; (el 2.5; (f) 3.0; (9 )  3.5; (h)  4.0. 
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FIGURE I .  Velocity distribution on the rear flow axis for different times t* when Re = 20, 
n = 0.20. 

various values of A. The evolution is analogous to that of the length of the wake but 
with a rate of increase which is about twice as slow. The limiting steady-state values 
depend very little on the blockage ratio and the whole development of a/D is affected 
very much less by the variation of h than the development of the length of the wake. 
This indicates that the vortices are deformed by the presence of the walls and the 
centres are displaced only very slightly towards the rear as A decreases. 

The evolution with time of the distance between the centres of the twin vortices 
is indicated for Re = 10 in figure 10, which gives curves of b/D versus t* for various 
values of A. As in the case of figure 9 for a/D, there is very little change in the curves 
as A varies, although a slight increase of b/D takes place as A decreases. In fact there 
is little change in the ratio b/D with either Reynolds number or h ; we shall illustrate 
this point later for the steady-state results when we consider the variation of the 
limiting values of a,  b and L with both Re and A. 

An interesting comparison confirming our experimental results for LID may be 
made with those of Taneda & Honji (1971) for Re about 20 and A = 0.026 (figure 11). 
If we take into account the lack of initial influence of the confining walls, an excellent 
agreement is found. In  effect, during the initial time t* < 4 our curve for Re = 20 is 
exactly between theirs for Re = 18.1 and 24.3, while above t* = 4, the overall effect 
of the greater confinement causes the recirculating zone to be established more 
rapidly with a shorter length. 

6. Comparisons with steady-state cdculations 
We now compare the steady-state results obtained in the experiments with the 

calculations of Hudson & Dennis (1985) and with the new results by obtaining 
extrapolated estimates to h = 0 of the effect of the blockage ratio A. Extrapolation 
is obviously necessary from figure 8; however, figures 8-10 show clearly the fact that 
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a true steady state has been obtained in the experiments. The steady-state structure 
of the flow is given in figure 12. We should point out that (a )  and ( c )  correspond to 
the smallest plate used, ( b ) ,  ( d )  and ( e )  to the medium plate and ( f )  to the largest one. 
The dimensions of the plates are, of course, governed by the Reynolds number 
required and the viscosity of the fluid used. Two visualizations are given for each h ; 
thus, for Re = 5,  10 and 20, the figures show clearly the influence of both the 
Reynolds number and the blockage ratio. Each figure for the smallest h compares 
well, where appropriate, with figure 2, bearing in mind the effect of A. A method of 
extrapolation to h = 0 of the various properties is to fit the values for the three 
smallest values of h to a parabolic approximation which can then be used to continue 
the curves to h = 0. Indeed, this is the only reasonable means of extrapolating these 
empirical results and the rate of variation with h of the properties is not greatly 
different from linear, generally speaking. 

In figure 13, we show the steady-state results for the wake length as a function of 
the blockage ratio A. Two curves are shown for each of the Reynolds numbers, 
depending on whether the length L is measured from the front or the rear of the plate, 
i.e. the curves correspond to L/D and (L+e) /D,  where e is the thickness of the plate. 
This introduces the point that the plate is of finite thickness, having the form 
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indicated in figure I, whereas the calculations are performed for an infinitesimally 
thin plate. Thus, it is not completely clear as to which is the appropriate comparison 
and, whereas this may be of relatively small importance at  Re = 20 when the wake 
is longer, it  could introduce more error at Re = 5, when it is shorter. However, the 
comparison is seen to be satisfactory, since for Re = 5 and 10 the calculated results 
lie between the two estimates LID and (L + e) /D and for Re = 20 at least one of the 
calculated results lies between the two. 

An attempt was, in fact, made in the calculations to consider the effect of finite 
thickness by considering a very thin elliptic cylinder of the same ratio e / D  as the 
plate. In each case the plate thickness in the experiments is e = 3 mm (so that from 
table 4, giving the plate breadths, we obtain 0.026 d e /D d 0.107). Thus, detailed 
calculations were carried out at  Re = I0 over this range. However, for the case of an 
elliptic cylinder, it was found that separation occurs on the downstream surface after 
the fluid has passed the ends of the major axis, so it is difficult to make precise 
comparisons with the flow indicated in figure 1.  The thickness of the plate as well as 
the profile indicated in figure 1 are governed by technical considerations of 
construction. Thus, these finer details of the comparisons are not entirely settled but 
it seems appropriate to mention them in an experimental-numerical investigation of 
the present kind. 
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FIGURE 8. Evolution with time t* of the flat plate closed-wake length for (a) Re = 20, ( b )  
Re = 10, ( c )  Re = 5, and for different A values. 

The variation with Re of the various steady-state estimates of LID is shown in 
figure 14. As we have previously noted, the results of Ingham et al. (1990) are 
considerably lower than those of the present calculations and seem to coincide with 
the present experimental results for blockage ratio A = 0.1. The experimental results 
for the dependence on h of the steady-state distance between the plate and the centre 
of each of the twin vortices is shown in figure 15. The variation is not great for any 
of the values of Re but the estimates are somewhat higher than those of the 
calculated results. The results of figure 16 for the distance between the two vortex 
centres also indicate very little variation with h in the experiments. 

A summary of results relating to the experimental and calculated positions of the 
vortex centres is given in table 6. The experimental values indicate the range of 
variation of a / L  and b l d ,  where d is the maximum width of the bubble, over the 
range of h considered. The calculations correspond to h = 0. As we have already 
mentioned, the calculations for a/L seem to be on the low side. However, the range 
of variation of bld in the experiments is small and quite consistent with the 
approximately constant value given by Hudson & Dennis (1985). Thus, taken in 
conjunction with the good measure of agreement between the calculations and the 
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FIGURE 10. Evolution with time t*  of the distance between the two vortex centres for Re = 10 
and different h values. 

experimental results of figures 13 and 14 for the length of wake, we may suppose that 
the overall agreement between theory and experiment is good. 

Finally, we give some results for the velocity distribution on the axis of symmetry 
to the rear of the plate in figure 17. This velocity distribution depends, naturally, on 
the blockage ratio h in the experimental results. However, it is found that, by 
normalizing the velocity with respect to the maximum velocity Uxmax and the x- 
distance by the wake length L, the curves of UxIUx,,, can be sensibly compared 
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with the calculations corresponding to h = 0. Such a comparison is made for Re = 10 
in figure 17(a) ,  and for Re = 20 in figure 17(b) .  We may note in both figures that 
decrease of h causes the experimental values of Ux/Ux,,, to increase at  stations 
which are closer to the plate than the location of Uxmax and to decrease at  stations 
farther away from the plate than this location. In effect, the profiles of Ux/Ux,,, are 
displaced towards the plate as A --f 0. Moreover, the calculated results are completely 
consistent with this tendency and are located more or less where one might expect 
the limit A = 0 of the experimental results to be. 

Figure 17 indicates that, for each value of Re, the tendency of the location of the 
maximum axial velocity to move towards the plate as h+O is similar to the 
corresponding movement towards the plate of the vortex centre. There is also a 
tendency of the location of the maximum velocity for a given h to move towards the 
plate as Re increases. Thus, for example, the location of each of the maximum values 
of the axial velocity in the experiments for different A, which is displaced only 
slightly towards the plate from the location x/L = 0.5 at Re = I0 in figure 17 (a ) ,  has 
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FIGURE 12(u-c). For caption see facing page. 

moved nearer to the plate in figure 17 ( b )  a t  x/L = 0.4 when Re = 20. This is entirely 
consistent with calculations and, indeed, consistent with the trend seen in figure 17. 
For example, the position of the maximum axial velocity for h = 0 a t  Re = 10 in 
figure 17 (a )  is a t  x/L = 0.44, according to the calculations, and a t  Re = 20, in figure 
17(b), it has moved to x / L  = 0.31. 
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FIGURE 12. The steady-state structure of the flow. (a) Re = 5, h = 0.05; ( 6 )  Re = 5 ,  h = 0.10; 
( c )  Re = 10, A = 0.05; ( d )  Re = 10, h = 0.10; ( e )  Re = 20, h = 0.10; ( f )  Re = 20, h = 0.20. 

7. Summary and conclusion 
The experimental part of this study has allowed us to obtain results for the 

unsteady flow normal to a flat plate in a channel which indicate how the effect of the 
walls changes the configuration of the flow. No systematic study of the influence of 
the walls on the wake behind a flat plate seems to have been made up to now. We 
have measured the velocity distribution on the axis of symmetry behind the plate, 
determined the different parameters which characterize the nature of the wake 
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and studied their evolution both as a function of the blockage ratio in the range 
0.05 < h < 0.2 and of the Reynolds number in the range 5 <Re < 20 for which the 
flow tends to a steady state; the experimental flow becomes unstable soon after 
Re = 20. The investigation of the steady-state properties of the wake as a function 
of h has enabled us to deduce values of the characteristics of the flow for h = 0 and 
thus to be able to make comparisons with the results provided by the numerical 
calculations for flow in an unbounded medium. 

In the numerical part of the study, the present results generally confirm and 
supplement the previous calculations of Hudson & Dennis (1985) over the range 
Re = 0.5 to 20, which covers the range of the experimental study. There is good 
agreement between both sets of calculated results and the experiments but the 
calculations are not in accord with those of Ingham et al. (1990), probably owing to 
a blockage effect in their case of an infinite array of plates. The present calculations 
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FIGURE 15. The distance between the plate and the vortex centre plotted against A. 

have been continued up to Re = 100 and the main properties of the wake have been 
scaled in table 4 according to the expected variations with Re discussed generally by 
Smith (1979, 1985), Peregrine (1985) and found in the numerical work of Fornberg 
(1980, 1985) for flow past a circular cylinder. The theoretical variations with Re for 
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Experimental ranges Calculated 

alL  
bld 

Hudson & Dennis & Hudson & 
Dennis W-Qiang Dennis 

( A  = 0) ( A  = 0) ( A  = 0) 
0.42 0.56 

10 0.05-0.2 0.404.60 0.57-0.51 0.37 0.39 0.58 
20 0.10-0.2 0.424.51 0.6Ck0.54 0.31 0.25 0.56 

TABLE 6. Estimates of the location of the eddy core inside the wake bubble 

Re A a l L  b l d  
5 0.05-0.2 0.44-0.70 0.474.40 0.43 

the length and breadth of the wake seem to be reasonably well confirmed, although 
it is open to question as to whether numerical results in this range of Re can be 
justifiably compared with asymptotic results valid mainly as Re becomes large. 
However, the results of Tngham et al. (1990) for the array of plates give a linear 
variation of eddy length over the entire range of Re from 10 to 500 and with only a 
5 % deviation even at Re = 5. Nevertheless, the present results seem to give at least 
a coherent link between experiment and Navier-Stokes calculations and theory over 
the range of Re considered. 

21 FLM 248 
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